Third-order Composite Runge Kutta Method for Solving Fuzzy Differential Equations

نویسندگان

  • A. Ramli
  • R. R. Ahmad
  • U. K. S. Din
  • A. R. Salleh
چکیده

In this paper a third-order composite Runge Kutta method is applied for solving fuzzy differential equations based on generalized Hukuhara differentiability. This study intends to explore the explicit methods which can be improved and modified to solve fuzzy differential equations. Some definitions and theorem are reviewed as a basis in solving fuzzy differential equations. Some numerical examples are given to illustrate the accuracy of the method. The comparisons with the existing method are also discussed. Based on the results, the proposed method gives the better result. Hence, the method can be used to solve fuzzy differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Hybrid Fuzzy Fractional Differential Equations by Runge Kutta 4th Order Method

In this paper we study numerical methods for hybrid fuzzy fractional differential equation, Degree of Sub element hood and the iteration method is used to solve the hybrid fuzzy fractional differential equations with a fuzzy initial condition.

متن کامل

Numerical solution of first-order fully fuzzy differential equations by Runge-Kutta Fehlberg method under strongly generalized H-differentiability

In this paper we propose Runge-Kutta Fehlberg method for solving fully fuzzy differential equations (FFDEs) of the form y ′ (t) = a⊗ y(t), y(0) = y0, t ∈ [0,T ] under strongly generalized H-differentiability. The algorithm used here is based on cross product of two fuzzy numbers. Using cross product we investigate the problem of finding a numerical approximation of solutions. The convergence of...

متن کامل

Nonstandard explicit third-order Runge-Kutta method with positivity property

When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...

متن کامل

Zero-Dissipative Explicit Runge-Kutta Method for Periodic Initial Value Problems

Abstract—In this paper zero-dissipative explicit Runge-Kutta method is derived for solving second-order ordinary differential equations with periodical solutions. The phase-lag and dissipation properties for Runge-Kutta (RK) method are also discussed. The new method has algebraic order three with dissipation of order infinity. The numerical results for the new method are compared with existing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016